

Trading Symbol AIM: AYM

13th March 2024

Anglesey Mining plc ("Anglesey" or "the Company")

Further drilling results confirm scale of Northern Copper Zone at Parys Mountain

Anglesey Mining plc (AIM:AYM), is pleased to announce that the assay results have been received for the recently completed drill hole NCZ002. Drill hole NCZ002 was the second hole to be completed from the infill drilling program of the Northern Copper Zone (NCZ) and Garth Daniel Zone (GDZ) at the Company's Parys Mountain Cu-Zn-Pb-Ag-Au VMS project on the Isle of Anglesey in North West Wales.

Consistent with historical drilling, assays confirm that NCZ002 intersected a significant zone of mineralisation across the NCZ with 114m @ 1.0% CuEq (including internal dilution). Within the broad mineralised envelope, there are numerous higher-grade zones. These demonstrate good continuity with previous drilling results and further support the integrity of the geological model and drill targeting.

Key intersections within the broad zone of mineralisation are detailed below:

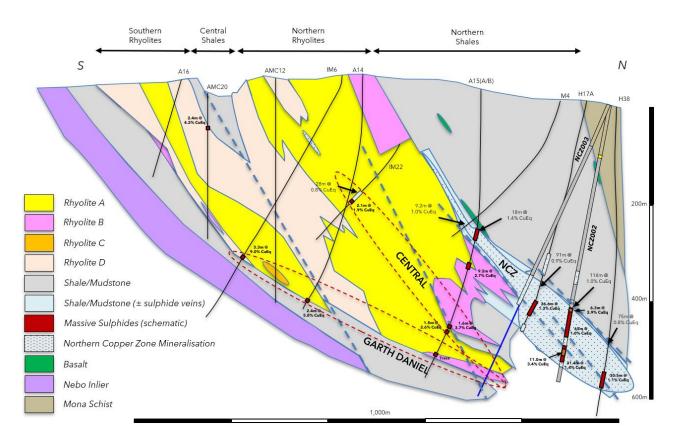
Northern Copper Zone - Hole NCZ002

- 65.0m @ 0.9% Cu, 0.09% Zn, 0.1% Pb, 4.2g/t Ag and 0.17g/t Au (1.0% CuEq) from a depth of 426m, including:
 - 6.3m @ 2.6% Cu, 3.2g/t Ag and 0.86g/t Au (2.8% CuEq) from 426.0m
 - 34.1m @ 0.9% Cu, 4.6g/t Ag and 0.11g/t Au (1.0% CuEq) from 448.3m, including:
 - 9.4m @ 1.9% Cu, 0.26% Pb, 0.22% Zn, 13.2g/t Ag and 0.22g/t Au (2.1% CuEq)
 - 1.0m @ 0.6% Cu, 3.1% Pb, 1.9% Zn, 47.9g/t Ag and 0.09g/t Au (2.0% CuEq / 7.1% ZnEq) from 483.0m
 - 0.5m @ 2.2% Cu, 1.1% Pb, 0.3% Zn, 47.3g/t Ag and 0.14g/t Au (2.7% CuEq / 7.5% ZnEq) from 484.5m
 - 4.4m @ 1.0% Cu, 0.16% Pb, 0.26% Zn, 4.4g/t Ag and 0.16g/t Au (1.1% CuEq / 3.1% ZnEq) from 486.6m
- 31.5m @ 1.4% Cu, 3.5g/t Ag and 0.44g/t Au (1.6% CuEq) from 508.5m, including:
 - 11.0m @ 3.0% Cu, 6.3g/t Ag and 1.20g/t Au (3.4% CuEq) from 515m

***CuEq grades are based on recovery factors and commodity prices as detailed after the tabulated reported assays of this release ***

The Company is targeting a resource update on the NCZ, with the aim of converting a significant portion of the Inferred Resource into the higher confidence Indicated category. Based on the Joint Ore Reserve Committee (JORC) guidelines, only Indicated and Measured category Mineral Resources can be converted into Ore Reserves.

Andrew King, Interim Chairman of Anglesey Mining, commented: *"Once again, we are very excited to see the Parys Mountain project delivering some very strong drilling results. It is worth reminding investors that Parys Mountain is demonstrably the largest and most advanced copper project in the UK with substantial resource*

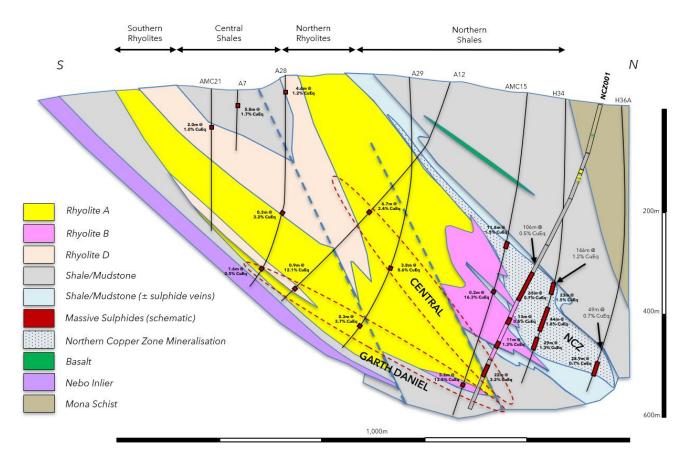

upside still evident. In addition, the project is favourably located on a previously permitted, brownfield development site with significant existing infrastructure already in place."

"Both NCZ001 and NCZ002 have delivered some exceptional high-grade copper intersections, including 11m at 3.4% CuEq, 22m at 3.2% CuEq, 6.3m at 2.8% CuEq and 9.4m at 2.1% CuEq, within broad thicknesses of mineralisation up to 100m wide. The results continue to support our view that the Northern Copper Zone provides significant upside for the Parys Mountain project, over and above the 5 million tonne contribution included within the 2021 Preliminary Economic Assessment.

"The third drill hole, NCZ003, is currently at a depth of around 450 metres. The geological and drill targeting model anticipated the Northern Copper Zone to commence at a downhole depth of around 400 metres. Once again, the model has been validated by these latest results from NCZ002 and we look forward to providing a further update once drilling of NCZ003 is complete."

Northern Copper Zone - Cross Section 4600mE

Section 4600mE below highlights the position of the recently completed drill hole NCZ002 and the up-dip position of NCZ003, which is currently being drilled.



The interpreted outline of the Northern Copper Zone in the cross-section does not imply an economic outcome, it simply highlights where sulphides have been identified within the Northern Shales. A significant number of the drill holes within this zone have returned consistent zones of higher-grade material, which is a key target of the current program. The recognition of a shear zone along the hanging wall of the Northern Copper Zone could imply a structural emplacement, or thickening of the sequence within the mine environment and will greatly assist with future targeting and drilling.

Importantly, every hole drilled into the interpreted position of the Northern Copper Zone has intersected broad zones of sulphides; and the current drilling is demonstrating the predictability of the mineralised zone from the detailed geological model that has been constructed and refined over several years.

The current drill hole, NCZ003, is targeting the up-dip area above historical hole H17A and could potentially provide additional information relating to the key lithology Rhyolite B, which included an intersection of 9.2m @ 2.7% CuEq in drill hole A15.

Northern Copper Zone - Cross Section 4800mE

Section 4800mE below highlights the position of drill hole NCZ001.

As per section 4600mE, this section also highlights the continuity of sulphide mineralisation across the Northern Copper Zone. With the completion of NCZ001, the Company has gained a greater understanding of the influence from Rhyolite B on the higher-grade zones of mineralisation.

Section 4800mE also highlights the potential related to the Central Zone with significant intersections from historical 1970's drilling, including 3.8m @ 8,6% Cu and 6.7m @ 2.4% Cu. The Company believes potential exists for these intersections to link to the 22m @ 3.2 % CuEq (including 4.0m @ 5.2% Cu) in NCZ001.

Drill hole details:

Hole ID	Co-ord	linates	Elevation	Azimuth	Dip	End of Hole
	(E)	(N)	(m)	(°)	(°)	(m)
NCZ002	243818	390943	72.0	165	-80	575

Reported Assays (results >0.5 CuEq in bold):

Hole Number	From	То	Sample Length	Assays							
	(m)	(m)	(m)	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	CuEq (%)*		
NCZ002	203.9	204.4	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	215	215.5	0.50	0.02	0.01	0.00	0.5	0.008	0.03%		
NCZ002	235	235.5	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	243.2	243.7	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	253.5	254	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	256.3	256.8	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	260.2	260.7	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	261.7	262.2	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	267.9	268.4	0.50	0.01	0.01	0.01	0.5	0.005	0.01%		
NCZ002	273.4	273.9	0.50	0.00	0.01	0.00	0.5	0.025	0.02%		
NCZ002	303.5	304	0.50	0.08	0.00	0.00	0.5	0.007	0.08%		
NCZ002	348	348.5	0.50	0.00	0.00	0.00	0.5	0.005	0.01%		
NCZ002	351.6	352.1	0.50	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	368	369	1.00	0.02	0.01	0.01	1.0	0.33	0.16%		
NCZ002	369	370	1.00	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	370	371	1.00	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	371	372	1.00	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	372	373	1.00	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	373	374	1.00	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	374	375	1.00	0.00	0.01	0.00	0.5	0.005	0.01%		
NCZ002	406	406.5	0.50	0.00	0.00	0.00	0.5	0.023	0.02%		
NCZ002	410	410.5	0.50	0.12	0.01	0.01	0.5	0.066	0.14%		
NCZ002	413.5	414	0.50	2.11	0.01	0.01	1.5	0.039	1.99%		
NCZ002	415	416	1.00	0.00	0.00	0.00	0.5	0.01	0.01%		
NCZ002	416	417	1.00	0.00	0.00	0.00	0.5	0.005	0.01%		
NCZ002	417	418	1.00	0.12	0.01	0.00	0.5	0.006	0.12%		
NCZ002	418	419	1.00	0.36	0.01	0.00	0.7	0.017	0.35%		
NCZ002	419	420	1.00	0.11	0.01	0.00	0.5	0.008	0.11%		
NCZ002	420	421	1.00	0.05	0.01	0.00	0.5	0.008	0.06%		
NCZ002	421	422	1.00	0.54	0.00	0.00	1.0	0.071	0.54%		
NCZ002	422	423	1.00	0.20	0.01	0.01	1.8	0.025	0.21%		
NCZ002	423	424	1.00	0.12	0.01	0.00	0.6	0.01	0.12%		
NCZ002	424	425	1.00	0.14	0.01	0.00	0.5	0.013	0.14%		
NCZ002	425	426	1.00	0.41	0.04	0.01	1.2	0.022	0.41%		
NCZ002	426	427	1.00	0.59	0.26	0.06	3.8	0.257	0.76%		
NCZ002	427	428	1.00	3.24	0.01	0.01	3.0	0.272	3.15%		
NCZ002	428	429	1.00	1.26	0.02	0.01	1.6	0.278	1.30%		
NCZ002	429	430	1.00	2.26	0.01	0.01	2.6	1.215	2.61%		

NCZ002	430	431	1.00	2.70	0.00	0.01	2.9	1.18	3.01%
NCZ002	431	431.6	0.60	6.18	0.01	0.01	5.4	1.15	6.25%
NCZ002	431.6	432.3	0.70	3.85	0.01	0.01	4.4	2.19	4.50%
NCZ002	433.7	434.3	0.60	0.19	0.01	0.00	0.5	0.023	0.19%
NCZ002	434.3	435	0.70	0.23	0.01	0.00	0.5	0.041	0.23%
NCZ002	435	436	1.00	0.20	0.01	0.01	0.6	0.071	0.22%
NCZ002	436	437	1.00	0.39	0.02	0.00	1.2	0.082	0.41%
NCZ002	437	438	1.00	0.65	0.01	0.00	1.3	0.341	0.75%
NCZ002	438	439	1.00	0.04	0.01	0.00	0.5	0.021	0.05%
NCZ002	439	440	1.00	0.16	0.01	0.00	0.5	0.012	0.16%
NCZ002	440	441	1.00	0.51	0.05	0.00	0.5	0.053	0.51%
NCZ002	441	442	1.00	0.64	0.01	0.00	0.7	0.136	0.66%
NCZ002	442	443	1.00	0.56	0.03	0.03	1.6	0.299	0.67%
NCZ002	443	444	1.00	0.33	0.01	0.01	0.5	0.124	0.36%
NCZ002	444	445	1.00	0.35	0.01	0.00	0.5	0.035	0.35%
NCZ002	445	446	1.00	0.24	0.01	0.00	1.2	0.051	0.25%
NCZ002	446	446.8	0.80	0.54	0.01	0.01	0.6	0.023	0.51%
NCZ002	447.5	448.3	0.80	0.07	0.01	0.00	0.7	0.019	0.08%
NCZ002	448.3	449	0.70	0.03	0.01	0.00	0.5	0.006	0.04%
NCZ002	449	450	1.00	0.17	0.01	0.00	0.5	0.028	0.17%
NCZ002	450	451	1.00	0.07	0.01	0.00	0.5	0.012	0.08%
NCZ002	451	452	1.00	0.07	0.01	0.00	0.5	0.012	0.08%
NCZ002	452	453	1.00	0.39	0.01	0.00	0.5	0.029	0.38%
NCZ002	453	454	1.00	0.50	0.01	0.00	0.5	0.014	0.48%
NCZ002	454	455	1.00	0.46	0.05	0.03	2.6	0.173	0.53%
NCZ002	455	456	1.00	0.07	0.01	0.01	0.5	0.017	0.08%
NCZ002	456	457	1.00	0.07	0.01	0.02	0.5	0.015	0.08%
NCZ002	457	458	1.00	0.78	0.04	0.03	2.4	0.113	0.80%
NCZ002	458	459	1.00	0.43	0.01	0.03	1.0	0.041	0.43%
NCZ002	459	460	1.00	4.24	0.01	0.01	3.5	0.027	3.98%
NCZ002	460	461	1.00	0.05	0.01	0.01	0.6	0.045	0.07%
NCZ002	461	462	1.00	0.49	0.01	0.03	2.3	0.151	0.54%
NCZ002	462	463	1.00	0.41	0.01	0.01	1.3	0.11	0.44%
NCZ002	463	464	1.00	0.10	0.01	0.01	0.6	0.063	0.13%
NCZ002	464	465	1.00	0.69	0.01	0.01	0.8	0.037	0.66%
NCZ002	465	466	1.00	1.43	0.01	0.02	2.6	0.143	1.41%
NCZ002	466	467	1.00	0.15	0.01	0.01	1.3	0.043	0.17%
NCZ002	467	468	1.00	0.22	0.01	0.01	1.1	0.06	0.24%
NCZ002	468	469	1.00	0.74	0.01	0.02	1.9	0.135	0.76%
NCZ002	469	470	1.00	0.48	0.01	0.03	2.8	0.122	0.52%
NCZ002	470	471	1.00	0.27	0.00	0.01	0.8	0.071	0.29%
NCZ002	471	472	1.00	0.13	0.01	0.01	0.5	0.036	0.14%
NCZ002	472	473	1.00	0.32	0.01	0.01	1.1	0.057	0.33%
NCZ002	473	474	1.00	2.82	0.72	1.26	25.8	0.11	3.27%
NCZ002	474	475	1.00	2.90	0.01	0.03	5.6	0.312	2.87%
NCZ002	475	476	1.00	3.29	0.10	0.08	11.2	0.591	3.41%
NCZ002	476	477	1.00	2.47	0.68	0.57	40.9	0.248	2.95%
NCZ002	477	478	1.00	2.70	0.06	0.25	19.9	0.193	2.78%
NCZ002	478	479	1.00	1.25	0.02	0.05	4.8	0.153	1.26%

NCZ002	479	480	1.00	0.73	0.13	0.07	4.8	0.142	0.81%
NCZ002	480	481	1.00	0.65	0.37	0.10	7.3	0.081	0.81%
NCZ002	481	482	1.00	0.76	0.01	0.02	3.2	0.186	0.81%
NCZ002	482	482.4	0.40	0.74	0.01	0.03	2.0	0.046	0.73%
NCZ002	483	483.95	0.95	0.57	1.87	3.09	47.9	0.093	1.98%
NCZ002	484.5	485	0.50	2.16	0.25	1.14	47.3	0.137	2.64%
NCZ002	486.6	487	0.40	1.92	0.72	0.64	16.1	0.128	2.26%
NCZ002	487	488	1.00	0.65	0.68	0.32	3.9	0.156	0.95%
NCZ002	488	489	1.00	1.63	0.06	0.05	4.5	0.091	1.61%
NCZ002	489	490	1.00	0.43	0.02	0.03	2.4	0.039	0.44%
NCZ002	490	491	1.00	0.72	0.08	0.06	2.3	0.362	0.87%
NCZ002	491	492	1.00	0.20	0.01	0.01	1.4	0.068	0.23%
NCZ002	492	493	1.00	0.02	0.00	0.00	0.5	0.005	0.03%
NCZ002	493	494	1.00	0.05	0.25	0.13	0.9	0.023	0.16%
NCZ002	494	495	1.00	0.05	0.01	0.00	0.5	0.007	0.06%
NCZ002	495	496	1.00	0.03	0.00	0.00	0.5	0.008	0.04%
NCZ002	496	497	1.00	0.01	0.00	0.00	0.5	0.005	0.01%
NCZ002	497	498	1.00	0.01	0.01	0.00	0.5	0.005	0.02%
NCZ002	498	499	1.00	0.02	0.00	0.00	0.5	0.011	0.03%
NCZ002	499	500	1.00	0.01	0.00	0.00	0.5	0.007	0.02%
NCZ002	500	501	1.00	0.09	0.01	0.00	0.8	0.013	0.10%
NCZ002	501	502	1.00	0.11	0.21	0.36	1.3	0.065	0.26%
NCZ002	502	503	1.00	0.01	0.00	0.00	0.5	0.009	0.02%
NCZ002	508.5	509	0.50	1.23	0.01	0.01	11.4	0.22	1.31%
NCZ002	509	510	1.00	0.22	0.00	0.00	0.7	0.037	0.23%
NCZ002	510	511	1.00	0.61	0.00	0.01	1.1	0.078	0.61%
NCZ002	511	512	1.00	0.23	0.01	0.01	0.9	0.025	0.23%
NCZ002	512	513	1.00	0.32	0.01	0.03	2.1	0.014	0.33%
NCZ002	513	514	1.00	0.35	0.06	0.03	1.3	0.027	0.37%
NCZ002	514	515	1.00	0.83	0.04	0.03	1.6	0.051	0.82%
NCZ002	515	516	1.00	1.32	0.28	0.11	4.6	0.825	1.69%
NCZ002	516	517	1.00	1.97	0.02	0.01	4.4	2.24	2.78%
NCZ002	517	518	1.00	1.34	0.12	0.06	5.1	0.554	1.55%
NCZ002	518	519	1.00	4.06	0.83	0.61	11.0	5.06	6.25%
NCZ002	519	520	1.00	4.60	0.07	0.02	7.9	2.21	5.25%
NCZ002	520	521	1.00	1.53	0.01	0.00	3.1	0.407	1.61%
NCZ002	521	522	1.00	5.00	0.10	0.01	8.7	1.17	5.21%
NCZ002	522	523	1.00	6.57	0.02	0.02	11.0	0.438	6.37%
NCZ002	523	524	1.00	0.83	0.06	0.07	2.5	0.071	0.85%
NCZ002	524	525	1.00	4.13	0.04	0.01	7.8	0.179	3.97%
NCZ002	525	526	1.00	1.12	0.10	0.04	3.1	0.049	1.12%
NCZ002	526	527	1.00	0.03	0.01	0.00	0.5	0.008	0.04%
NCZ002	527	528	1.00	0.12	0.14	0.04	0.5	0.006	0.16%
NCZ002	528	529	1.00	0.06	0.06	0.07	0.6	0.008	0.09%
NCZ002	529	530	1.00	1.43	0.13	0.10	6.0	0.042	1.44%
NCZ002	530	531	1.00	0.21	0.01	0.00	0.7	0.027	0.21%
NCZ002	531	532	1.00	0.25	0.02	0.01	0.7	0.021	0.25%
NCZ002	532	533	1.00	0.18	0.01	0.00	1.0	0.041	0.20%
NCZ002	533	534	1.00	0.70	0.01	0.00	1.8	0.042	0.68%

NCZ002	534	535	1.00	0.56	0.01	0.00	1.4	0.026	0.54%
NCZ002	535	536	1.00	0.37	0.02	0.00	0.5	0.011	0.36%
NCZ002	536	537	1.00	1.01	0.05	0.08	4.0	0.032	1.00%
NCZ002	537	538	1.00	0.32	0.00	0.00	0.8	0.022	0.32%
NCZ002	538	539	1.00	2.35	0.02	0.01	5.5	0.045	2.25%
NCZ002	539	540	1.00	1.61	0.17	0.03	4.1	0.033	1.59%
NCZ002	540	541	1.00	0.15	0.04	0.00	0.5	0.012	0.16%
NCZ002	541	542	1.00	0.21	0.01	0.00	0.5	0.007	0.21%
NCZ002	542	543	1.00	0.16	0.01	0.00	0.6	0.029	0.17%
NCZ002	543	544	1.00	0.03	0.01	0.00	0.5	0.006	0.04%
NCZ002	544	545	1.00	0.04	0.02	0.00	0.5	0.018	0.06%
NCZ002	545	546	1.00	0.21	0.01	0.02	0.6	0.018	0.22%
NCZ002	546	547	1.00	0.34	0.06	0.04	1.1	0.02	0.36%
NCZ002	547	548	1.00	0.09	0.02	0.00	0.5	0.012	0.10%
NCZ002	548	549	1.00	0.19	0.01	0.00	0.7	0.016	0.19%
NCZ002	549	550	1.00	0.28	0.00	0.00	0.6	0.014	0.27%
NCZ002	550	551	1.00	0.13	0.01	0.00	0.7	0.029	0.14%
NCZ002	551	552	1.00	0.03	0.01	0.16	1.0	0.011	0.07%
NCZ002	552	553	1.00	0.01	0.01	0.00	0.5	0.005	0.01%
NCZ002	553	554	1.00	0.05	0.01	0.02	0.7	0.005	0.05%
NCZ002	554	555	1.00	0.02	0.05	0.03	0.5	0.005	0.04%
NCZ002	555	556	1.00	0.08	0.02	0.00	0.7	0.041	0.10%
NCZ002	563.7	564.2	0.50	0.02	0.01	0.00	0.5	0.008	0.03%
NCZ002	566	566.5	0.50	0.02	0.01	0.00	0.5	0.005	0.02%
NCZ002	570.5	571	0.50	0.02	0.01	0.01	0.5	0.005	0.03%
NCZ002	571	571.5	0.50	0.07	0.05	0.02	0.5	0.009	0.09%
NCZ002	571.5	572	0.50	0.14	0.61	0.10	1.1	0.027	0.34%
NCZ002	572	572.5	0.50	0.22	0.01	0.02	1.5	0.032	0.23%
NCZ002	572.5	573	0.50	0.02	0.00	0.00	0.5	0.005	0.02%
Total			149.15						

* Copper Equivalent (CuEq %) = Cu grade % * Cu Recovery + (Zn grade % * Zn Recovery * (Zn price \$/t /Cu price \$/t)) + (Pb grade % * Pb Recovery * (Pb price \$/t /Cu price \$/t)) + (Ag grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t)) + (Au grade g/t / 31.103 * Ag recovery * (Ag price \$/oz /Cu price \$/t))

Cu Equivalent calculated using following commodity prices: Zn – US\$3350/t, Cu – US\$9523/t, Pb – US\$2292/t, Ag – US\$25.50/oz and Au – US\$1850/oz

Cu Equivalent calculated using following recovery assumptions for Northern Copper Zone: Zn – 82%, Cu – 93%, Pb – 78%, Ag – 72% and Au – 65%

Sample analysis and QA/QC

All samples generated from the drilling were dispatched to ALS Loughrea, Ireland.

Samples were assayed for multi-element data analysis using their ME-ICP61 package, which includes Ag, Cu, Pb and Zn. The samples were also assayed for gold using their Au-AA23 analysis package. Overlimit assays were then analysed using their Ag-OG62, Cu-OG62, Pb-OG62, Zn-OG62 and ME-OG62 analysis packages.

For QA/QC purposes, Anglesey Mining used the industry standard of inserting 5% Certified Reference Material (CRM) samples, 2.5% Certified Blank Samples (Blanks) and 5% duplicate samples at source. The CRMs were sourced from OREAS Australia.

Competent Person

.

The information in this announcement which relates to Drilling Results has been approved by Mrs. Liz de Klerk, M.Sc., Pr.Sci.Nat., FIMMM who is a professional registered with the South African Council for Natural Scientific Professionals (SACNASP: 400090/08) and independent consultant to the Company. Mrs. de Klerk is the Senior Geologist & Managing Director of Micon International Co Limited and has over 20 continuous years of exploration and mining experience in a variety of mineral deposit styles. Mrs. de Klerk has sufficient experience which is relevant to the style of exploration, mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves" (JORC Code). Mrs. de Klerk consents to inclusion in the announcement of the matters based on this information in the form and context in which it appears.

About Anglesey Mining plc:

Anglesey is traded on the AIM market of the London Stock Exchange and currently has 420,093,017 ordinary shares in issue.

Anglesey is developing the 100% owned Parys Mountain Cu-Zn-Pb-Ag-Au VMS deposit in North Wales, UK with a reported resource of 5.3 million tonnes at over 4.0% combined base metals in the Measured and Indicated categories and 10.8 million tonnes at over 2.5% combined base metals in the Inferred category.

Anglesey also holds a 49.75% interest in the Grängesberg iron ore project in Sweden and 12% of Labrador Iron Mines Holdings Limited, which through its 52% owned subsidiaries, is engaged in the exploration and development of direct shipping iron ore deposits in Labrador and Quebec.

For further information, please contact:

Anglesey Mining plc

Andrew King, Interim-Chairman – Tel: +44 (0)7825 963700 Jo Battershill, Non-Executive Director – Tel: +44 (0)7540 366000

Davy

Nominated Adviser & Joint Corporate Broker Brian Garrahy / Daragh O'Reilly – Tel: +353 1 679 6363

WH Ireland Joint Corporate Broker Katy Mitchell / Harry Ansell – Tel: +44 (0) 207 220 1666

Brand Communications

Public & Investor Relations Alan Green – Tel: +44 (0) 7976 431608

LEI: 213800X8BO8EK2B4HQ71